Oogenesis in cultures derived from adult human ovaries
نویسندگان
چکیده
Ten years ago, we reported that in adult human females the ovarian surface epithelium (OSE) is a source of germ cells. Recently, we also demonstrated that new primary follicles are formed by assembly of oocytes with nests of primitive granulosa cells in the ovarian cortex. The components of the new primary follicles, primitive granulosa and germ cells, differentiated sequentially from the OSE, which arises from cytokeratin positive mesenchymal progenitor cells residing in the ovarian tunica albuginea. In the present study, we investigated the possibility that the oocytes and granulosa cells may differentiate in cultures derived from adult human ovaries. Cells were scrapped from the surface of ovaries and cultured for 5 to 6 days, in the presence or absence of estrogenic stimuli [phenol red (PhR)]. The OSE cells cultured in the medium without PhR differentiated into small (15 micron) cells of granulosa phenotype, and epithelial, neural, and mesenchymal type cells. In contrast, OSE cells cultured in the presence of PhR differentiated directly into large (180 micron) cells of the oocyte phenotype. Such cells exhibited germinal vesicle breakdown, expulsion of the polar body, and surface expression of zona pellucida proteins, i.e. characteristics of secondary oocytes. These in vitro studies confirm our in vivo observations that in adult human ovaries, the OSE is a bipotent source of oocytes and granulosa cells. Development of numerous mature oocytes from adult ovarian stem cells in vitro offers new strategies for the egg preservation, IVF utilization, and treatment of female infertility. In addition, other clinical applications aiming to utilize stem cells, and basic stem cell research as well, may employ totipotent embryonic stem cells developing from fertilized oocytes.
منابع مشابه
Assessment of In Vitro-Derived Germ Cells Contribution in Oogenesis in Female Mice Ovaries
Introduction: Contrary to a common belief, most mammalian females lose the ability of Germ Cell (GC) renewal and oogenesis during fetal life. Although, it has been claimed that germ line stem cells preserve oogenesis in postnatal mouse ovaries, that postnatal oogenesis keeps producing functional and sufficient GCs in the case of infertility (caused by different reasons) is doubtful. On the othe...
متن کاملStem cell support of oogenesis in the human.
The possibility that women produce new oocytes post-natally as part of the normal physiological function of the ovary is currently under investigation. Post-natal production of oocyte-like cells has been detected under experimental conditions in the mouse. Although these cells have many characteristics of oocytes, their potential to mature to fertilization-competence was unproven. Zou et al. (P...
متن کاملPostnatal oogenesis in humans: a review of recent findings
In spite of generally accepted dogma that the total number of follicles and oocytes is established in human ovaries during the fetal period of life rather than forming de novo in adult ovaries, some new evidence in the field challenges this understanding. Several studies have shown that different populations of stem cells, such as germinal stem cells and small round stem cells with diameters of...
متن کاملGerm stem cells in the mammalian adult ovary: considerations by a fan of the primordial germ cells.
At or early after birth, mammalian ovaries are filled with primordial follicles each composed by an oocyte blocked at the end of prophase I surrounded by a single layer of granulosa cells. The doctrine that female mammals are born with a finite number of oocytes fated to be exhausted with the age has been challenged by recent results claiming that new oocytes can be continuously formed in the p...
متن کاملImmunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial
The immune system plays an important role in the regulation of tissue homeostasis ("tissue immune physiology"). Function of distinct tissues during adulthood, including the ovary, requires (1) Renewal from stem cells, (2) Preservation of tissue-specific cells in a proper differentiated state, which differs among distinct tissues, and (3) Regulation of tissue quantity. Such morphostasis can be e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reproductive biology and endocrinology : RB&E
دوره 3 شماره
صفحات -
تاریخ انتشار 2005